Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. True FALSE It is possible to have a geometric random variable X have expected value 5 and variance 5 as well.

Solution: If $E[X]=5$ then $(1-p) / p=5$ so $p=1 / 6$ and $\operatorname{Var}(X)=(1-p) / p^{2}=30$.
2. True FALSE The number of ways to place b balls into u boxes with $b>u$ is 0 if the boxes are indistinguishable and we want it to be injective but sometimes more than 0 if the boxes are distinguishable (still injective).
\square
Solution: Both are 0.

Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) I have a bag with 5 coins and 4 are fair while one has both sides tails.
(a) (5 points) Suppose you randomly reach in the bag and grab a coin and flip it. Suppose that you flip tails. What is the probability you have a fair coin?

Solution: Using Bayes Theorem, it is

$$
\begin{aligned}
P(\text { fair } \mid T) & =\frac{P(T \mid \text { fair }) P(\text { fair })}{P(T \mid \text { fair }) P(\text { fair })+P(T \mid \overline{\text { fair }) P(\overline{\text { fair }})}} \\
& =\frac{\frac{1}{2} \cdot \frac{4}{5}}{\frac{14}{2}+1 \cdot \frac{1}{5}} \\
& =\frac{\frac{2}{5}}{\frac{2}{5}+\frac{1}{5}}=\frac{2}{3} .
\end{aligned}
$$

(b) (5 points) Now suppose you flip it again and get tails again (total of two tails in a row). What is the probability it is fair now?

Solution: Using Bayes Theorem, it is

$$
\begin{aligned}
P(\text { fair } \mid T T) & =\frac{P(T T \mid \text { fair }) P(\text { fair })}{P(T T \mid \text { fair }) P(\text { fair })+P(T T \mid \overline{\text { fair }}) P(\overline{\text { fair }})} \\
& =\frac{\frac{1}{4} \cdot \frac{4}{5}}{\frac{14}{4}+1 \cdot \frac{1}{5}} \\
& =\frac{\frac{1}{5}}{\frac{1}{5}+\frac{1}{5}}=\frac{1}{2} .
\end{aligned}
$$

